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Introduction

The objective of this work is the development of efficient techniques to optimize the

cost associated with transfer trajectories to libration point orbits in the Sun-Earth-Moon

four body problem, that may include lunar gravity assists. Initially, dynamical systems

theory is used to determine invariant manifolds associated with the desired libration point

orbit. These manifolds are employed to produce an initial approximation to the transfer

trajectory. Specific trajectory requirements such as, transfer injection constraints, inclusion

of phasing loops, and targeting of a specified state on the manifold are then incorporated

into the design of the transfer trajectory. A two level differential corrections process is used

to produce a fully continuous trajectory that satisfies the design constraints, and includes

appropriate lunar and solar gravitational models. Based on this methodology, and using the

manifold structure from dynamical systems theory, a technique is presented to optimize the

cost associated with insertion onto a specified libration point orbit.

Procedure

The procedure to determine "a suitable transfer trajectory begins with the selection of a

libration point orbit (LPO) that meets the desired mission criteria. Based on this periodic

or quasi-periodic orbit, then, a series of stable manifolds are determined that approach the

reference orbit asymptotically. [1-3] From dynamical systems theory it is known that the stable

and unstable manifolds associated with periodic (and quasi-periodic) solutions form surfaces

in the six dimensional phase space (position plus velocity). [1-3] Moreover, these manifolds ap-

pear as two dimensional surfaces when projected onto three dimensional configuration space

(position only). States that lie on this surface will asymptotically approach the reference

orbit, provided that the state matches the entire 7 dimensional state (position, velocity, and

time) on the manifold at the specified point.

Along this surface representing the stable manifold, a single trajectory is selected that

contains an appropriate close approach to the Earth. This solution serves as the initial

approximation to the transfer from the vicinity of the Earth to the libration point orbit. In

general, however, the Earth close approach will not satisfy the necessary transfer trajectory

injection (TTI) constraints, such as altitude or inclination. Thus, the methodology described

in Howell and Wilson [4'5], Wilson [_], and Howell et alfl] is employed to enforce the desired

transfer injection conditions, as well as, to target the desired manifold.

To apply this methodology, a single state is selected along the desired stable manifold

to serve as a fixed target point for the end of the transfer. The fixed position and time

corresponding to this state on the manifold surface are targeted by a two level differential

corrections process to produce the complete transfer trajectory. In order to precisely ap-

proach the desired libration point orbit, the final state on the transfer must, in fact, lie on

the surface defined by the stable manifold. The position and time requirements can be met

by this procedure, however, the velocity at the final state is not constrained in the solution

process. Therefore, a maneuver is required to correct any velocity discontinuity between

the end of the transfer and the required velocity state on the manifold; this maneuver is

called the Libration Orbit Insertion or LOI. Once the state of the vehicle is actually on the

manifold surface, it will then approach the libration point orbit; this completes the transfer



from Earth to the LPO with, theoretically, no additional maneuvers.

Selection of an Optimal LOI Location

The selection process for the fixed LOI location is somewhat arbitrary, but the target

state is generally chosen to produce a reasonable insertion cost onto the desired LPO. It

is desired to allow this fixed state to vary in some specified manner in order to determine

a more optimal location for the LOI maneuver. An automated procedure is developed to

vary the position and time of this final target state, while preserving the manifold solution

obtained from dynamical systems theory. Thus, the resulting transfer trajectory will still

insert onto the same manifold surface and hence, approach the desired libration point orbit.

Utilizing the previous procedure, the selected final target state on the manifold surface

generates a transfer that may or may not correspond to a solution with an acceptable LOI

cost. A methodology is sought to allow the "fixed" LOI target state to vary along the two

dimensional manifold surface to minimize the required insertion maneuver. Schematically,

this is depicted in Figure 1. Initially, the target state )(act for the transfer lies on the desired

manifold surface in position and time, but requires some associated LOI cost to achieve

the 7 dimensional manifold state that will approach the libration point orbit. Based on

this velocity difference, a change in state A._ is calculated to reduce the magnitude of the

required maneuver• This results in a new final state Xdes that, in all likelihood, does not lie

on the required manifold surface. However, if this new final state is projected back onto the

manifold surface, another state -k'proj is obtained that does lie on the desired surface, and

Mani fold Surface

Figure 1: Stylized Representation of Manifold Targeting Procedure
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therefore, is an acceptablefinal target state. A new transfer is determined to this new LOI
location that should require a smallermaneuver to insert onto the manifold. This iterative
processis repeateduntil someminimum cost is achieved.

One Dimensional Variations Along the Manifold

As an example of the application of this methodology, consider the variation of the LOI

target state along a single manifold trajectory. In this case, the "surface" is, in fact, one

dimensional, corresponding to the selected manifold solution. Some LOI target state )_,ct

along the manifold is selected and the transfer is computed to meet the desired position

and time. From this computed solution, changes in the position and time (A.X') of the final

state are determined that will reduce the velocity error. This change in state is added to

the previous target position and time to produce a new final target state -_es; however, this

point no longer lies on the desired manifold surface.

By projecting )(des onto the one dimensional manifold trajectory, a new final target state

)(proj is determined. This projection is computed by minimizing the distance from the desired

target, )(des, to some point on the actual manifold trajectory. Once the new LOI target state

is determined from f(p,.oj, a new transfer is computed using the previous solution as an initial

guess. A new LOI cost is computed and the process is repeated until some minimum insertion

cost is achieved. Note that time is selected as the independent variable along the manifold

when projecting the desired end state onto the manifold surface. The time along the manifold

is monotonic and provides a one-to-one mapping along the trajectory, i.e., there is only one

state associated with each time along the one dimensional manifold. To ensure an adequate

resolution for the time variable along the manifold, a 10 th order interpolation scheme is used

with nodes selected every one day along the numerically integrated path. This proves to be

an efficient method to both store and evaluate the manifold states over a given time interval.

Results for 1-D Variations Along a Selected Manifold

As an example of this process, consider the direct transfer from Earth to a Lissajous

orbit about the Sun-Earth L2 point using a single lunar gravity assist. The one dimensional

manifold trajectory selected for this analysis is plotted in Figure 2 in a frame centered at

the Earth that rotates with the Earth about the Sun, such that the x axis is always directed

along the line from the Sun to the Earth. In the figure, the manifold path extends from the

lunar orbit to the state at JD 2454560.0, approximately half way through the first revolution

along the Lissajous orbit. The square symbols on the plot denote 10 day intervals beginning

at JD 2454370.0, just after the lunar encounter. The "nominal" LOI point at JD 2454400.0

is also marked. To isolate the effects of the variations in the LOI target state location on the

LOI cost, the transfer injection date is fixed at some value that is within the range identified

for the given nominal. The transfer to the nominal LOI state is computed as described

earlier, and then the LOI target state variation scheme is applied to this solution.

The results of this procedure are presented in Figure 3 for the direct transfer case (i.e.,

a transfer with no phasing loops). In the figure, the LOI maneuver cost is plotted as a

function of the LOI date for a series of transfer injection dates. (To clarify the figure, the

abscissa corresponds to LOI target Julian date minus 2454000.) Each curve in the figure

3



E o
v

-5_0_

r Orbit

2454560

2454390 t_

24___._._. LOI 2454440

I 2454367
= I I = i i I = _ r = I

500000 l E+06 1.5E+06

x (km)

Figure 2: Selected Manifold Trajectory for Earth-to-L2 Transfer Example
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Figure 3: LOI Target Date Variation for Direct Transfer Case
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representsthe variation in LOI cost for a specifiedtransfer injection date; for example, the
curve labeled62.5correspondsto solutions with transfer injection on JD (24543)62.5.The
minimum LOI cost determined by the LOI target state variation procedure for eachgiven
TTI date curve is marked with a diamond. Theseminimums areconnectedby a dotted line
to signify that a continuum of solutionsare possibleover the rangeof TTI datesexamined.
Note that the overallminimum LOI cost determined by this procedurefor the rangeof dates
examined is 0.31 m/s on JD 2454412.058,correspondingto a transfer injection date of JD
2454363.764.

Conclusions

This procedure is highly applicable to a variety of libration point missions, such as the

one depicted here using a lunar gravity assist to facilitate the transfer to a Sun-Earth L_

Lissajous. Similar results are available for this type of transfer that includes multiple phasing

loops prior to the lunar encounter. This process is also useful in missions without lunar

gravity assists, such as the upcoming GENESIS Discovery mission.[ 1] Extension of the one

dimensional results to the full two dimensional surface will allow an optimal LOI location to

be determined on the manifold surface, while maintaining the desired characteristics of the
libration point orbit.
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